0.0003x^2+2x+500=0

Simple and best practice solution for 0.0003x^2+2x+500=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.0003x^2+2x+500=0 equation:


Simplifying
0.0003x2 + 2x + 500 = 0

Reorder the terms:
500 + 2x + 0.0003x2 = 0

Solving
500 + 2x + 0.0003x2 = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
0.0003 the coefficient of the squared term: 

Divide each side by '0.0003'.
1666666.667 + 6666.666667x + x2 = 0

Move the constant term to the right:

Add '-1666666.667' to each side of the equation.
1666666.667 + 6666.666667x + -1666666.667 + x2 = 0 + -1666666.667

Reorder the terms:
1666666.667 + -1666666.667 + 6666.666667x + x2 = 0 + -1666666.667

Combine like terms: 1666666.667 + -1666666.667 = 0.000
0.000 + 6666.666667x + x2 = 0 + -1666666.667
6666.666667x + x2 = 0 + -1666666.667

Combine like terms: 0 + -1666666.667 = -1666666.667
6666.666667x + x2 = -1666666.667

The x term is 6666.666667x.  Take half its coefficient (3333.333334).
Square it (11111111.12) and add it to both sides.

Add '11111111.12' to each side of the equation.
6666.666667x + 11111111.12 + x2 = -1666666.667 + 11111111.12

Reorder the terms:
11111111.12 + 6666.666667x + x2 = -1666666.667 + 11111111.12

Combine like terms: -1666666.667 + 11111111.12 = 9444444.453
11111111.12 + 6666.666667x + x2 = 9444444.453

Factor a perfect square on the left side:
(x + 3333.333334)(x + 3333.333334) = 9444444.453

Calculate the square root of the right side: 3073.181487156

Break this problem into two subproblems by setting 
(x + 3333.333334) equal to 3073.181487156 and -3073.181487156.

Subproblem 1

x + 3333.333334 = 3073.181487156 Simplifying x + 3333.333334 = 3073.181487156 Reorder the terms: 3333.333334 + x = 3073.181487156 Solving 3333.333334 + x = 3073.181487156 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-3333.333334' to each side of the equation. 3333.333334 + -3333.333334 + x = 3073.181487156 + -3333.333334 Combine like terms: 3333.333334 + -3333.333334 = 0.000000 0.000000 + x = 3073.181487156 + -3333.333334 x = 3073.181487156 + -3333.333334 Combine like terms: 3073.181487156 + -3333.333334 = -260.151846844 x = -260.151846844 Simplifying x = -260.151846844

Subproblem 2

x + 3333.333334 = -3073.181487156 Simplifying x + 3333.333334 = -3073.181487156 Reorder the terms: 3333.333334 + x = -3073.181487156 Solving 3333.333334 + x = -3073.181487156 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-3333.333334' to each side of the equation. 3333.333334 + -3333.333334 + x = -3073.181487156 + -3333.333334 Combine like terms: 3333.333334 + -3333.333334 = 0.000000 0.000000 + x = -3073.181487156 + -3333.333334 x = -3073.181487156 + -3333.333334 Combine like terms: -3073.181487156 + -3333.333334 = -6406.514821156 x = -6406.514821156 Simplifying x = -6406.514821156

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-260.151846844, -6406.514821156}

See similar equations:

| 7x-3+3=7x | | 88=8(f+3) | | 2x+4.87xy+25y+32y-19x+9.88= | | -5n^2+30n-45=10 | | (x+1)(3x+5)=2x-(7-3x^2) | | 6+13t+13n-4t-2n-13= | | (x+1)(3x+5)=2x-(7-3x) | | [2(x-4)][2(x-4)]=26 | | 1/5x-2x= | | 3x+2y+4z=1 | | y=6-6x-3 | | 1/5x-2x=? | | 3in(x)+2in(4)=in(128) | | 8-1.25c=2 | | t^2x^2-t(t-4)x+(t-2)=0 | | 2(x+1)=2+x | | f(x)=6x^4+5x^3-6x^2-3x+2 | | 0.10(y-2)+0.08=0.02y-0.6 | | 5(5)-10=16 | | -7x-10y=-7 | | 0.06(y-7)+0.20y=0.08y-2.1 | | P(3)=x^2-5x+6 | | 6=4+2p | | 9a+10=28 | | 5(3n+3)=8(4n+7)+9 | | y=540187ln(x)-7E+06 | | 3x-7=2-(x+5) | | -2p-4=1 | | -50=-3x+8x | | Sin(x)(1-2(cos(x)))=0 | | -4(b+9)=-12 | | 2x+3(28)=174 |

Equations solver categories